Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.972
Filtrar
1.
J Inflamm Res ; 17: 2271-2284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645877

RESUMO

Background and Objective: Periodontitis is an inflammatory disease that eventually destroys tooth-supporting tissue. Yunnan Baiyao (YNBY), a traditional Chinese medicine compound with haemostatic and anti-inflammatory properties has shown therapeutic potential in several diseases. Our previous study revealed that YNBY suppressed osteoclast differentiation in periodontitis. The purpose of this study is to investigate the influences of YNBY on osteoblasts and explore its potential mechanisms. Materials and Methods: A rat periodontitis model was established by ligation of maxillary second molars. After the end of modelling, histopathological observation by hematoxylin-eosin (HE) staining and Masson trichrome staining, detection of bone resorption by Micro-CT scanning, detection of osteoclasts by tartrate-resistant acid phosphatase (TRAP) staining, expression of osteocalcin (OCN) and microtubule-associated protein 1 light chain 3 (LC3) by immunohistochemistry. Lipopolysaccharides was used to irritate MC3T3-E1 osteoblastic cells and ex vivo calvarial organ as an in vitro model of inflammation. CCK-8 assay was performed to examine the toxicity of YNBY to MC3T3-E1 osteoblastic cells. Osteogenesis was assessed with alizarin red staining, immunofluorescence staining, Western blot and immunohistochemical staining. Transmission electron microscopy, fluorescent double staining, Western blot and immunohistochemical staining were employed to detect autophagy. Results: Histological and micro-CT analyses revealed that YNBY gavage reduced bone loss caused by experimental periodontitis and upregulated osteogenic proteins in vivo. YNBY attenuated the production of autophagy-related proteins in periodontitis rats. Additionally, YNBY promoted osteogenesis by inhibiting inflammation-induced autophagy in vitro. Furthermore, YNBY suppressed LPS-mediated bone resorption and promoted the production of osteoblast-related proteins in inflamed calvarial tissues ex vivo. Conclusion: This study demonstrated, through in vivo, in vitro and ex vivo experiments, that YNBY promoted osteoblast differentiation by suppressing autophagy, which markedly alleviated bone destruction caused by periodontitis.

2.
Front Immunol ; 15: 1383113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646530

RESUMO

It is well established that inflammatory processes in the vicinity of bone often induce osteoclast formation and bone resorption. Effects of inflammatory processes on bone formation are less studied. Therefore, we investigated the effect of locally induced inflammation on bone formation. Toll-like receptor (TLR) 2 agonists LPS from Porphyromonas gingivalis and PAM2 were injected once subcutaneously above mouse calvarial bones. After five days, both agonists induced bone formation mainly at endocranial surfaces. The injection resulted in progressively increased calvarial thickness during 21 days. Excessive new bone formation was mainly observed separated from bone resorption cavities. Anti-RANKL did not affect the increase of bone formation. Inflammation caused increased bone formation rate due to increased mineralizing surfaces as assessed by dynamic histomorphometry. In areas close to new bone formation, an abundance of proliferating cells was observed as well as cells robustly stained for Runx2 and alkaline phosphatase. PAM2 increased the mRNA expression of Lrp5, Lrp6 and Wnt7b, and decreased the expression of Sost and Dkk1. In situ hybridization demonstrated decreased Sost mRNA expression in osteocytes present in old bone. An abundance of cells expressed Wnt7b in Runx2-positive osteoblasts and ß-catenin in areas with new bone formation. These data demonstrate that inflammation, not only induces osteoclastogenesis, but also locally activates canonical WNT signaling and stimulates new bone formation independent on bone resorption.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Inflamação , Osteogênese , Receptor 2 Toll-Like , Via de Sinalização Wnt , Animais , Camundongos , Osteogênese/efeitos dos fármacos , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Inflamação/metabolismo , Porphyromonas gingivalis , Lipopolissacarídeos , Osteoblastos/metabolismo , Osteoblastos/imunologia , Osteócitos/metabolismo , Reabsorção Óssea/metabolismo , Osteoclastos/metabolismo , Osteoclastos/imunologia , Masculino , Proteínas Wnt/metabolismo , Crânio , Camundongos Endogâmicos C57BL
3.
J Bone Miner Res ; 39(1): 59-72, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38630879

RESUMO

Identification of promising seed cells plays a pivotal role in achieving tissue regeneration. This study demonstrated that LepR-expressing cells (LepR+ cells) are required for maintaining periodontal homeostasis at the adult stage. We further investigated how LepR+ cells behave in periodontal healing using a ligature-induced periodontitis (PD) and a self-healing murine model with LepRCre/+; R26RtdTomato/+ mice. Lineage tracing experiments revealed that the largely suppressed osteogenic ability of LepR+ cells results from periodontal inflammation. Periodontal defects were partially recovered when the ligature was removed, in which the osteogenic differentiation of LepR+ cell lineage was promoted and contributed to the newly formed alveolar bone. A cell ablation model established with LepRCre/+; R26RtdTomato/+; R26RDTA/+ mice further proved that LepR+ cells are an important cell source of newly formed alveolar bone. Expressions of ß-catenin and LEF1 in LepR+ cells were upregulated when the inflammatory stimuli were removed, which are consistent with the functional changes observed during periodontal healing. Furthermore, the conditional upregulation of WNT signaling or the application of sclerostin neutralized antibody promoted the osteogenic function of LepR+ cells. In contrast, the specific knockdown of ß-catenin in LepR+ human periodontal ligament cells with small interfering RNA caused arrested osteogenic function. Our findings identified the LepR+ cell lineage as a critical cell population for endogenous periodontal healing post PD, which is regulated by the WNT signaling pathway, making it a promising seed cell population in periodontal tissue regeneration.


Assuntos
Osteogênese , Periodontite , Adulto , Camundongos , Humanos , Animais , beta Catenina/metabolismo , Ligamento Periodontal/metabolismo , Inflamação , Via de Sinalização Wnt/fisiologia , Diferenciação Celular , Células Cultivadas
4.
JBMR Plus ; 8(5): ziae011, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38577521

RESUMO

G protein-coupled receptors (GPCRs) mediate a wide spectrum of physiological functions, including the development, remodeling, and repair of the skeleton. Fibrous dysplasia (FD) of the bone is characterized by fibrotic, expansile bone lesions caused by activating mutations in GNAS. There are no effective therapies for FD. We previously showed that ColI(2.3)+/Rs1+ mice, in which Gs-GPCR signaling was hyper-activated in osteoblastic cell lineages using an engineered receptor strategy, developed a fibrotic bone phenotype with trabecularization that could be reversed by normalizing Gs-GPCR signaling, suggesting that targeting the Gs-GPCR or components of the downstream signaling pathway could serve as a promising therapeutic strategy for FD. The Wnt signaling pathway has been implicated in the pathogenesis of FD-like bone, but the specific Wnts and which cells produce them remain largely unknown. Single-cell RNA sequencing on long-bone stromal cells of 9-wk-old male ColI(2.3)+/Rs1+ mice and littermate controls showed that fibroblastic stromal cells in ColI(2.3)+/Rs1+ mice were expanded. Multiple Wnt ligands were up- or downregulated in different cellular populations, including in non-osteoblastic cells. Treatment with the porcupine inhibitor LGK974, which blocks Wnt signaling broadly, induced partial resorption of the trabecular bone in the femurs of ColI(2.3)+/Rs1+ mice, but no significant changes in the craniofacial skeleton. Bone fibrosis remained evident after treatment. Notably, LGK974 caused significant bone loss in control mice. These results provide new insights into the role of Wnt and Gs-signaling in fibrosis and bone formation in a mouse model of Gs-GPCR pathway overactivation.

5.
J Biol Chem ; : 107308, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657862

RESUMO

A deleterious effect of elevated levels of vitamin A on bone health has been reported in numerous clinical studies. Mechanistic studies in rodents have shown that numbers of periosteal osteoclasts are increased, while endocortical osteoclasts are simultaneously decreased by vitamin A treatment. These observations indicate that osteoclastogenesis on the endocortical and periosteal surfaces of bone is differentially controlled by vitamin A. The present study investigated the in vitro and in vivo effect of all-trans retinoic acid (ATRA), the active metabolite of vitamin A, on periosteal osteoclast progenitors. Mouse calvarial bone cells were cultured in media containing ATRA, with or without the osteoclastogenic cytokine RANKL, on plastic dishes or bone discs. Whereas ATRA did not stimulate osteoclast formation alone, the compound robustly potentiated the formation of RANKL-induced bone resorbing osteoclasts. This effect was due to stimulation by ATRA (EC50 ∼3nM) on the numbers of macrophages/osteoclast progenitors in the bone cell cultures, as assessed by mRNA and protein expression of several macrophage and osteoclast progenitor cell markers, such as M-CSF receptor, RANK, F4/80 and CD11b, as well as by FACS-analysis of CD11b+/F480+/Gr1- cells. The stimulation of macrophage numbers in the periosteal cell cultures was not mediated by increased M-CSF or IL-34. In contrast, ATRA did not enhance macrophages in bone marrow cell cultures. Importantly, ATRA treatment upregulated the mRNA expression of several macrophage-related genes also in the periosteum of tibia in adult mice. These observations demonstrate a novel mechanism by which vitamin A enhances osteoclast formation specifically on periosteal surfaces.

6.
Eur J Pharmacol ; : 176604, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38649090

RESUMO

Osteoporosis (OP) is a metabolic bone disease with a high incidence rate worldwide. Its main features are decreased bone mass, increased bone fragility and deterioration of bone microstructure. It is caused by an imbalance between bone formation and bone resorption. Ginsenoside is a safe and effective traditional Chinese medicine (TCM) usually extracted from ginseng plants, having various therapeutic effects, of which the effect against osteoporosis has been extensively studied. We searched a total of 44 relevant articles with using keywords including osteoporosis, ginsenosides, bone mesenchymal cells, osteoblasts, osteoclasts and bone remodeling, all of which investigated the cellular mechanisms of different types of ginsenosides affecting the activity of bone remodeling by mesenchymal stem cells, osteoblasts and osteoclasts to counteract osteoporosis. This review describes the different types of ginsenosides used to treat osteoporosis from different perspectives, providing a solid theoretical basis for future clinical applications.

7.
Arch Oral Biol ; 163: 105963, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38608563

RESUMO

OBJECTIVES: Orthodontic tooth movement is a mechanobiological reaction induced by appropriate forces, including bone remodeling. The mechanosensitive Piezo channels have been shown to contribute to bone remodeling. However, information about the pathways through which Piezo channels affects osteoblasts remains limited. Thus, we aimed to investigate the influence of Piezo1 on the osteogenic and osteoclast factors in osteoblasts under mechanical load. MATERIALS AND METHODS: Cyclic stretch (CS) experiments on MC3T3-E1 were conducted using a BioDynamic mechanical stretching device. The Piezo1 channel blocker GsMTx4 and the Piezo1 channel agonist Yoda1 were used 12 h before the application of CS. MC3T3-E1 cells were then subjected to 15% CS, and the expression of Piezo1, Piezo2, BMP-2, OCN, Runx2, RANKL, p-p65/p65, and ALP was measured using quantitative real-time polymerase chain reaction, western blot, alkaline phosphatase staining, and immunofluorescence staining. RESULTS: CS of 15% induced the highest expression of Piezo channel and osteoblast factors. Yoda1 significantly increased the CS-upregulated expression of Piezo1 and ALP activity but not Piezo2 and RANKL. GsMTx4 downregulated the CS-upregulated expression of Piezo1, Piezo2, Runx2, OCN, p-65/65, and ALP activity but could not completely reduce CS-upregulated BMP-2. CONCLUSIONS: The appropriate force is more suitable for promoting osteogenic differentiation in MC3T3-E1. The Piezo1 channel participates in osteogenic differentiation of osteoblasts through its influence on the expression of osteogenic factors like BMP-2, Runx2, and OCN and is involved in regulating osteoclasts by influencing phosphorylated p65. These results provide a foundation for further exploration of osteoblast function in orthodontic tooth movement.

8.
Adv Sci (Weinh) ; : e2307818, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613835

RESUMO

Hypercholesterolaemia is a systemic metabolic disease, but the role of organs other than liver in cholesterol metabolism is unappreciated. The phenotypic characterization of the Tsc1Dmp1 mice reveal that genetic depletion of tuberous sclerosis complex 1 (TSC1) in osteocytes/osteoblasts (Dmp1-Cre) triggers progressive increase in serum cholesterol level. The resulting cholesterol metabolic dysregulation is shown to be associated with upregulation and elevation of serum amyloid A3 (SAA3), a lipid metabolism related factor, in the bone and serum respectively. SAA3, elicited from the bone, bound to toll-like receptor 4 (TLR4) on hepatocytes to phosphorylate c-Jun, and caused impeded conversion of cholesterol to bile acids via suppression on cholesterol 7 α-hydroxylase (Cyp7a1) expression. Ablation of Saa3 in Tsc1Dmp1 mice prevented the CYP7A1 reduction in liver and cholesterol elevation in serum. These results expand the understanding of bone function and hepatic regulation of cholesterol metabolism and uncover a potential therapeutic use of pharmacological modulation of SAA3 in hypercholesterolaemia.

9.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612379

RESUMO

Glycosylation plays a crucial role in the maintenance of homeostasis in the body and at the onset of diseases such as inflammation, neurodegeneration, infection, diabetes, and cancer. It is also involved in bone metabolism. N- and O-glycans have been shown to regulate osteoblast and osteoclast differentiation. We recently demonstrated that ganglio-series and globo-series glycosphingolipids were essential for regulating the proliferation and differentiation of osteoblasts and osteoclasts in glycosyltransferase-knockout mice. Herein, we reviewed the importance of the regulation of bone metabolism by glycoconjugates, such as glycolipids and glycoproteins, including our recent results.


Assuntos
Glicolipídeos , Glicosiltransferases , Animais , Camundongos , Glicosilação , Homeostase , Inflamação , Camundongos Knockout
10.
J Dent Sci ; 19(2): 990-997, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38618075

RESUMO

Background/purpose: Amoxicillin and clindamycin are the most effective decontaminants for intraoral bone grafts before their application in bone regeneration without cytotoxic effects on osteoblasts, but their effects on the gene expression of markers involved in osteoblast growth and differentiation remain unclear. The study objective was to determine the effects of amoxicillin and clindamycin on the gene expression of markers involved in osteoblast growth and differentiation. Materials and methods: Real-time polymerase chain reaction (RT-PCR) was performed to explore the effect of 150 µg/mL clindamycin or 400 µg/mL amoxicillin on the gene expression by primary human osteoblasts (HOBs) of runt-related transcription factor 2 (Runx-2), osterix (OSX), alkaline phosphatase (ALP), osteocalcin (OSC), osteoprotegerin (OPG), receptor activator for nuclear factor κ B ligand (RANKL), type I collagen (Col-I), bone morphogenetic proteins 2 and 7 (BMP-2 and BMP-7), TGF-ß1 and TGF-ß receptors (TGF-ßR1, TGF-ßR2, and TGF-ßR3), and vascular endothelial growth factor (VEGF). Results: Treatment with 150 µg/mL clindamycin significantly increased the gene expression of TFG-ß1, TGF-ßR1, TGF-ßR2, TGF-ßR3, RUNX-2, Col-1, OSX, OSC, BMP-2, BMP-7, ALP, VEGF, and RANKL by HOBs. Treatment with 400 µg/mL amoxicillin significantly increased the gene expression of TGF-ß R1, Col-I, OSC, RANKL, and OPG alone. Conclusion: These findings suggest that 150 µg/mL clindamycin is the decontaminant of choice to treat intraoral bone grafts before their application in bone regeneration. The osteogenic and antibacterial properties of clindamycin can favor and accelerate the integration of bone grafts in the oral cavity.

11.
Front Endocrinol (Lausanne) ; 15: 1360054, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638133

RESUMO

Introduction: Osteoporosis is a systemic age-related disease characterized by reduced bone mass and microstructure deterioration, leading to increased risk of bone fragility fractures. Osteoporosis is a worldwide major health care problem and there is a need for preventive approaches. Methods and results: Apigenin and Rutaecarpine are plant-derived antioxidants identified through functional screen of a natural product library (143 compounds) as enhancers of osteoblastic differentiation of human bone marrow stromal stem cells (hBMSCs). Global gene expression profiling and Western blot analysis revealed activation of several intra-cellular signaling pathways including focal adhesion kinase (FAK) and TGFß. Pharmacological inhibition of FAK using PF-573228 (5 µM) and TGFß using SB505124 (1µM), diminished Apigenin- and Rutaecarpine-induced osteoblast differentiation. In vitro treatment with Apigenin and Rutaecarpine, of primary hBMSCs obtained from elderly female patients enhanced osteoblast differentiation compared with primary hBMSCs obtained from young female donors. Ex-vivo treatment with Apigenin and Rutaecarpine of organotypic embryonic chick-femur culture significantly increased bone volume and cortical thickness compared to control as estimated by µCT-scanning. Discussion: Our data revealed that Apigenin and Rutaecarpine enhance osteoblastic differentiation, bone formation, and reduce the age-related effects of hBMSCs. Therefore, Apigenin and Rutaecarpine cellular treatment represent a potential strategy for maintaining hBMSCs health during aging and osteoporosis.


Assuntos
Alcaloides Indólicos , Células-Tronco Mesenquimais , Osteoporose , Quinazolinonas , Humanos , Idoso , Apigenina/farmacologia , Apigenina/metabolismo , Osteoblastos/metabolismo , Senescência Celular , Fator de Crescimento Transformador beta/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo
12.
Mater Today Bio ; 26: 101038, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38638704

RESUMO

The ideal implant surface plays a substantial role in maintaining bone homeostasis by simultaneously promoting osteoblast differentiation and limiting overactive osteoclast activity to a certain extent, which leads to satisfactory dynamic osseointegration. However, the rational search for implant materials with an ideal surface structure is challenging and a hot research topic in the field of tissue engineering. In this study, we constructed titanium dioxide titanium nanotubes (TNTs) by anodic oxidation and found that this structure significantly promoted osteoblast differentiation and inhibited osteoclast formation and function while simultaneously inhibiting the total protein levels of proline-rich tyrosine kinase 2 (PYK2) and focal adhesion kinase (FAK). Knockdown of the PYK2 gene by siRNA significantly suppressed the number and osteoclastic differentiation activity of mouse bone marrow mononuclear cells (BMMs), while overexpression of PYK2 inhibited osteogenesis and increased osteoclastic activity. Surprisingly, we found for the first time that neither knockdown nor overexpression of the FAK gene alone caused changes in osteogenesis or osteoclastic function. More importantly, compared with deletion or overexpression of PYK2/FAK alone, coexpression or cosilencing of the two kinases accelerated the effects of TNTs on osteoclastic and osteogenic differentiation on the surface of cells. Furthermore, in vivo experiments revealed a significant increase in positiveexpression-PYK2 cells on the surface of TNTs, but no significant change in positiveexpression -FAK cells was observed. In summary, PYK2 is a key effector molecule by which osteoblasts sense nanotopological mechanical signals and maintain bone homeostasis around implants. These results provide a referable molecular mechanism for the future development and design of homeostasis-based regulatory implant biomaterials.

13.
Elife ; 132024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591777

RESUMO

Bone remodeling is a complex process involving the coordinated actions of osteoblasts and osteoclasts to maintain bone homeostasis. While the influence of osteoblasts on osteoclast differentiation is well established, the reciprocal regulation of osteoblasts by osteoclasts has long remained enigmatic. In the past few years, a fascinating new role for osteoclasts has been unveiled in promoting bone formation and facilitating osteoblast migration to the remodeling sites through a number of different mechanisms, including the release of factors from the bone matrix following bone resorption and direct cell-cell interactions. Additionally, considerable evidence has shown that osteoclasts can secrete coupling factors known as clastokines, emphasizing the crucial role of these cells in maintaining bone homeostasis. Due to their osteoprotective function, clastokines hold great promise as potential therapeutic targets for bone diseases. However, despite long-standing work to uncover new clastokines and their effect in vivo, more substantial efforts are still required to decipher the mechanisms and pathways behind their activity in order to translate them into therapies. This comprehensive review provides insights into our evolving understanding of the osteoclast function, highlights the significance of clastokines in bone remodeling, and explores their potential as treatments for bone diseases suggesting future directions for the field.


Assuntos
Reabsorção Óssea , Osteoclastos , Humanos , Osteoclastos/metabolismo , Osteoblastos/metabolismo , Reabsorção Óssea/metabolismo , Remodelação Óssea , Osteogênese/fisiologia , Diferenciação Celular/fisiologia
14.
J Periodontal Res ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623787

RESUMO

AIMS: Excessive occlusal force with periodontitis leads to rapid alveolar bone resorption. However, the molecular mechanism by which inflammation and mechanical stress cause bone resorption remains unclear. We examined the role of Piezo1, a mechanosensitive ion channel expressed on osteoblasts, in the changes in the receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG) ratio in mouse MC3T3-E1 osteoblast-like cells under Porphyromonas gingivalis lipopolysaccharide (P.g.-LPS) and mechanical stress. METHODS: To investigate the effect of P.g.-LPS and mechanical stress on the RANKL/OPG ratio and Piezo1 expression, we stimulated MC3T3-E1 cells with P.g.-LPS. After 3 days in culture, shear stress, a form of mechanical stress, was applied to the cells using an orbital shaker. Subsequently, to investigate the role of Piezo1 in the change of RANKL/OPG ratio, we inhibited Piezo1 function by knockdown via Piezo1 siRNA transfection or by adding GsMTx4, a Piezo1 antagonist. RESULTS: The RANKL/OPG ratio significantly increased in MC3T3-E1 cells cultured in a medium containing P.g.-LPS and undergoing mechanical stress compared to cells treated with P.g.-LPS or mechanical stress alone. However, the expression of Piezo1 was not increased by P.g.-LPS and mechanical stress. In addition, phosphorylation of MEK/ERK was induced in the cells under P.g.-LPS and mechanical stress. MC3T3-E1 cells treated with P.g.-LPS and mechanical stress when cocultured with RAW264.7 cells induced their differentiation into osteoclast-like cells. The increased RANKL/OPG ratio was suppressed by either Piezo1 knockdown or the addition of GsMTx4. Furthermore, GsMTx4 inhibited the phosphorylation of MEK/ERK. CONCLUSION: These findings suggest that P.g.-LPS and Piezo1-mediated mechanical stress induce MEK/ERK phosphorylation and increase RANKL expression in osteoblasts. Consequently, this leads to the differentiation of osteoclast precursor cells into osteoclasts.

15.
Int Immunopharmacol ; 132: 112000, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38583238

RESUMO

Various studies have been investigated the phenotypic and functional distinctions of craniofacial and long bone cells involved in bone regeneration. However, the process of bone tissue regeneration after bone grafting involves complicated interactions between different cell types at the donor-recipient site. Additionally, differences in alterations of the immune microenvironment at the recipient site remained to be explored. Osteoblasts (OBs) and macrophages (MØ) play essential roles in the bone restoration and regeneration processes in the bone and immune systems, respectively. The modulation of MØ on OBs has been extensively explored in the literature, whereas limited research has been conducted on the influence of OBs on the MØ phenotype and function. In the present study, OBs from the mandible and femur (MOBs and FOBs, respectively) promoted cranial defect regeneration in rats, with better outcomes noted in the MOBs-treated group. After MOBs transplantation, a significant inflammatory response was induced, accompanied by an early increase in IL-10 secretion. And then, there was an upregulation in M2-MØ-related cell markers and inflammatory factor expression. Condition media (CM) of OBs mildly inhibited apoptosis in MØ, enhanced their migration and phagocytic functions, and concurrently increased iNOS and Arg1 expression, with MOB-CM demonstrating more pronounced effects compared to FOB-CM. In conclusion, our investigation showed that MOBs and FOBs have the ability to modulate MØ phenotype and function, with MOBs exhibiting a stronger regulatory potential. These findings provide a new direction for improving therapeutic strategies for bone regeneration in autologous bone grafts from the perspective of the immune microenvironment.

16.
J Biomed Mater Res A ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619300

RESUMO

Critically-sized segmental bone defects represent significant challenges requiring grafts for reconstruction. 3D-printed synthetic bone grafts are viable alternatives to structural allografts if engineered to provide appropriate mechanical performance and osteoblast/osteoclast cell responses. Novel 3D-printable nanocomposites containing acrylated epoxidized soybean oil (AESO) or methacrylated AESO (mAESO), polyethylene glycol diacrylate, and nanohydroxyapatite (nHA) were produced using masked stereolithography. The effects of volume fraction of nHA and methacrylation of AESO on interactions of differentiated MC3T3-E1 osteoblast (dMC3T3-OB) and differentiated RAW264.7 osteoclast cells with 3D-printed nanocomposites were evaluated in vitro and compared with a control biomaterial, hydroxyapatite (HA). Higher nHA content and methacrylation significantly improved the mechanical properties. All nanocomposites supported dMC3T3-OB cells' adhesion and proliferation. Higher amounts of nHA enhanced cell adhesion and proliferation. mAESO in the nanocomposites resulted in greater adhesion, proliferation, and activity at day 7 compared with AESO nanocomposites. Excellent osteoclast-like cells survival, defined actin rings, and large multinucleated cells were only observed on the high nHA fraction (30%) mAESO nanocomposite and the HA control. Thus, mAESO-based nanocomposites containing higher amounts of nHA have better interactions with osteoblast-like and osteoclast-like cells, comparable with HA controls, making them a potential future alternative graft material for bone defect repair.

17.
Materials (Basel) ; 17(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612139

RESUMO

Grit basting is the most common process applied to titanium dental implants to give them a roughness that favors bone colonization. There are numerous studies on the influence of roughness on osseointegration, but the influence of the compressive residual stress associated with this treatment on biological behavior has not been determined. For this purpose, four types of surfaces have been studied using 60 titanium discs: smooth, smooth with residual stress, rough without stress, and rough with residual stress. Roughness was studied by optic interferometry; wettability and surface energy (polar and dispersive components) by contact angle equipment using three solvents; and residual stresses by Bragg-Bentano X-ray diffraction. The adhesion and alkaline phosphatase (ALP) levels on the different surfaces were studied using Saos-2 osteoblastic cultures. The bacterial strains Streptococcus sanguinis and Lactobacillus salivarius were cultured on different surfaces, determining the adhesion. The results showed that residual stresses lead to increased hydrophilicity on the surfaces, as well as an increase in surface energy, especially on the polar component. From the culture results, higher adhesion and higher ALP levels were observed in the discs with residual stresses when compared between smooth and roughened discs. It was also found that roughness was the property that mostly influenced osteoblasts' response. Bacteria colonize rough surfaces better than smooth surfaces, but no changes are observed due to residual surface tension.

18.
Int J Stem Cells ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38604748

RESUMO

Acetaldehyde dehydrogenase 2 (ALDH2) is the second enzyme involved in the breakdown of acetaldehyde into acetic acid during the process of alcohol metabolism. Roughly 40% of East Asians carry one or two ALDH2*2 alleles, and the presence of ALDH2 genetic mutations in individuals may affect the bone remodeling cycle owing to accumulation of acetaldehyde in the body. In this study, we investigated the effects of ALDH2 mutations on bone remodeling. In this study, we examined the effects of ALDH2 polymorphisms on in vitro osteogensis using human induced pluripotent stem cells (hiPSCs). We differentiated wild-type (ALDH2*1/*1-) and ALDH2*1/*2-genotyped hiPSCs into osteoblasts (OBs) and confirmed their OB characteristics. Acetaldehyde was administered to confirm the impact caused by the mutation during OB differentiation. Calcium deposits formed during osteogenesis were significantly decreased in ALDH2*1/*2 OBs. The expression of osteogenic markers were also decreased in acetaldehyde-treated OBs differentiated from the ALDH2*1/*2 hiPSCs. Furthermore, the impact of ALDH2 polymorphism and acetaldehyde-induced stress on inflammatory factors such as 4-hydroxynonenal and tumor necrosis factor α was confirmed. Our findings suggest that individuals with ALDH2 deficiency may face challenges in acetaldehyde breakdown, rendering them susceptible to disturbances in normal bone remodeling therefore, caution should be exercised regarding alcohol consumption. In this proof-of-concept study, we were able to suggest these findings as a result of a disease-in-a-dish concept using hiPSCs derived from individuals bearing a certain mutation. This study also shows the potential of patient-derived hiPSCs for disease modeling with a specific condition.

19.
Cell Rep ; 43(5): 114043, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642336

RESUMO

Bone is highly susceptible to cancer metastasis, and both tumor and bone cells enable tumor invasion through a "vicious cycle" of biochemical signaling. Tumor metastasis into bone also alters biophysical cues to both tumor and bone cells, which are highly sensitive to their mechanical environment. However, the mechanobiological feedback between these cells that perpetuate this cycle has not been studied. Here, we develop highly advanced in vitro and computational models to provide an advanced understanding of how tumor growth is regulated by the synergistic influence of tumor-bone cell signaling and mechanobiological cues. In particular, we develop a multicellular healthy and metastatic bone model that can account for physiological mechanical signals within a custom bioreactor. These models successfully recapitulated mineralization, mechanobiological responses, osteolysis, and metastatic activity. Ultimately, we demonstrate that mechanical stimulus provided protective effects against tumor-induced osteolysis, confirming the importance of mechanobiological factors in bone metastasis development.

20.
Res Sq ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562782

RESUMO

Balance of bone and marrow fat formation is critical for bone homeostasis. The imbalance of bone homeostasis will cause various bone diseases, such as osteoporosis. However, the precise mechanisms governing osteoporotic bone loss and marrow adipose tissue (MAT) accumulation remain poorly understood. By analysis of publicly available databases from bone samples of osteoporosis patients, we found that the expression of intraflagellar transport 20 (IFT20) and WW domain containing transcription regulator 1 (WWTR1) were significantly downregulated in osteoblast lineage cells. Additionally, we found that double deletions of IFT20 and WWTR1 in osteoblasts resulted in a significant accumulation of MAT and bone loss. Moreover, IFT20 and WWTR1 deficiency in osteoblasts exacerbated bone-fat imbalance in ovariectomy (OVX)- and high-fat-diet (HFD)-induced osteoporosis mouse models. Mechanistically, we found that deletions of IFT20 and WWTR1 in osteoblasts synergistically inhibited osteogenesis and promoted adipogenesis and osteoclastogenesis. We also found that IFT20 interacted with TGF-ß receptor type II (TßRII) to enhance TßRII stability by blocking c-Cbl-mediated ubiquitination and degradation of TßRII. WWTR1 transcriptionally upregulated TßRII expression by directly binding its promoter. These findings indicate that targeting IFT20/WWTR1 may be a potential therapeutic strategy for the treatment of osteoporosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...